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The unstoppable rise of deep learning

• Neural networks timeline

1940s First proposed

1998 Convolutional nets

2006 Deep nets trained

2011 Rectifier units

2015 Vision breakthrough

2016 Win at Go

2019 Turing Award

• Enabled by

− Big data 

− Flexible, easy to build models

− Availability of GPUs

− Efficient inference



Deep learning with everything



Deep learning in healthcare



Much excitement about self-driving

www.bsfilms.me - Black Sheep Films

http://www.bsfilms.me/


Self-driving in Oxford….



Would you trust a self-driving car?

Waymo early riders, Tesla, Uber, …

In the UK FiveAI, Oxbotica, …



Unwelcome news recently…

How can this happen if we have 99.9% accuracy?



An AI safety problem…

• Complex scenarios

- goals

- perception

- autonomy

- situation awareness

- context (social, regulatory)

- trust

- ethics

• Safety-critical, so 
guarantees needed

• Should failure occur, accountability needs to be established

Credit: Anita Dufala/Public source



Modelling challenges

• Cyber-physical systems 

− hybrid combination of continuous and discrete dynamics, with stochasticity

− autonomous control

• Data rich, data-enabled models

− achieved through learning

− parameter estimation

− continuous adaptation

• Heterogeneous components, including learning based

− model-based design

− automated verification via model checking

− correct-by-construction model synthesis from specifications
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Probabilistic verification and synthesis

• Stochasticity ever present

− randomisation, uncertainty, risk 

• Need quantitative, probabilistic guarantees for:

− safety, security, reliability, performance, resource usage, trust, authentication, …

• Examples

− (reliability) “the probability of the car crashing in the next hour is less than 0.001”

− (energy) “energy usage is below 2000 mA per minute”

• My focus is on automated, tool-supported methodologies

− probabilistic model checker PRISM, www.prismmodelchecker.org

− HVC 2016 Award (joint with Dave Parker and Gethin Norman)

• Applied to a wide range of systems…

http://www.prismmodelchecker.org/


OK, but what is probabilistic verification good for?
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Case study: Cardiac pacemaker
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• How it works

− reads electrical signals through sensors in the right atrium and right ventricle

− monitors the timing of heart 
beats and local electrical activity

− generates artificial pacing 
signal as necessary

• Safety-critical real-time system!

• The guarantee

• (basic safety) maintain 
60-100 beats per minute

− Killed by code: FDA recalls 23 defective pacemaker devices because of adverse 
health consequences or death, six likely caused by software defects (2010)



Modelling framework

Model the pacemaker and the heart, compose and verify

Quantitative verification of implantable cardiac pacemakers over hybrid heart models. Chen et al, 
Information and Computation 2014



Modelling framework



Modelling framework



Pacemaker verification

• Basic guarantees

− (basic safety) maintain 
60-100 beats per minute

− (energy usage) detailed analysis, 
plotted against timing parameters
of the pacemaker

• Advanced guarantees

− rate-adaptive pacemaker, for patients with
chronotropic deficiency

− (advanced safety) adapt the rate to exercise 
and stress levels

− in silico testing 

Closed-Loop Quantitative Verification of Rate-Adaptive Pacemakers. Paoletti et al, ACM Transactions on 
Cyber-Physical Systems 2018



Synthetic ECG: healthy heart



Bradycardia (slow heart rate)



Bradycardia heart, paced



Parameter synthesis for pacemakers

• Can we adapt the pacing rate to patient’s ECG to

− minimise energy usage?

− maximise cardiac output?

− explore trade offs?

• The guarantee

− (optimal timing delay synthesis):
find values for timing delays that 
optimise a given objective, 
adapted to patient’s ECG

• Significant improvement over default 
values

Synthesising robust and optimal parameters for cardiac pacemakers using symbolic and evolutionary 
computation techniques. Kwiatkowska et al, HSB’16



Trade offs in optimal delay synthesis



Case study: ECG biometrics

• Biometrics increasing in popularity

− are they secure?

• Nymi band

− ECG used as a biometric identifier

− biometric template created first

− compared with real ECG signal

• Proposed uses 

− for access into buildings and 
restricted spaces

− for payment  

− etc

Broken Hearted: How to Attack ECG Biometrics, Ebertz et al., In Proc NDSS 2017



Attack on ECG biometrics

• We use synthetic ECGs to 
impersonate a user

− build model from data, 
41 volunteers

− inject synthetic signals to 
break authentication

− 80% success rate

• Results

− serious weakness

− countermeasures needed

• Modelling essential, good for attacks…



Case study: Transferability of attack

• Beware your fitness tracker!

• How easy it is to predict attacks 
when collecting data 
from different sources

− ECG

− eye movements

− mouse movements

− touchscreen dynamics

− gait

− etc

• Human study

− easy for eye movements

− ECG more chaotic

When your fitness tracker betrays you, Ebertz et al., In Proc S&P 2018



Back to the challenge of autonomous driving…

• Things that can go wrong in perception software

- sensor failure

- object detection failure

• Machine learning 
software

- not clear how it 
works

- does not offer
guarantees

- Yet safety-critical
applications

Lidar image, Credit: Oxford Robotics Institute



Deep neural networks can be fooled!

• They are unstable wrt adversarial perturbations

− often imperceptible changes to the image [Szegedy et al 2014, Biggio et al 2013 …]

− sometimes artificial white noise

− practical attacks, potential security risk

− transferable between different architectures

− not just image classification: also images segmentation, pose recognition, sentiment 
analysis…



Training vs testing



Should we worry about safety of self-driving?

− Nexar Traffic Light Challenge: Red light classified as green with 68%/95%/78% 
confidence after one pixel change.

• Deep neural networks are unstable wrt adversarial perturbations

− Nexar Traffic Light Challenge: red light classified as green with 68%/95%/78% 
confidence after one pixel change

39Feature-Guided Black-Box Safety Testing of Deep Neural Networks. Wicker et al, In Proc. TACAS, 2018.



German traffic sign benchmark…

stop 30m 80m           30m go             go
speed speed         speed right        straight

limit limit           limit

Confidence    0.999964           0.99

Safety Verification of Deep Neural Networks. Huang et al, In Proc. CAV, 2017.



Aren’t these artificial?

Real traffic signs in Alaska!

Need to consider physical attacks, not only digital…



Safety of classification decisions

• Safety assurance process is complex

• Here focus on safety at a point as part of such a process

− same as pointwise robustness… η

• Assume given

− trained network f : D → {c1,…ck} 

− diameter for support region η

− norm, e.g. L2, L∞

• Define safety as invariance of classification decision over η

− i.e. ∄y ∈ η such that f(x) ≠ f(y)

• Also wrt family of safe manipulations

− e.g. scratches, weather conditions, camera angle, etc

x

y



Training vs testing vs verification



Searching for adversarial examples…

• Input space for most neural networks is high dimensional and non-linear

• Where do we start?

• How can we apply structure to the problem?

• Image of a tree has 
4,000 x 2,000 x 3 
dimensions = 
24,000,000 
dimensions

• We would like to find a 
very ‘small’ change to 
these dimensions



Feature-based representation

• Employ the SIFT algorithm to extract features

• Reduce dimensionality by focusing on salient features

• Use a Gaussian mixture model in order to assign each pixel a probability based 
on its perceived saliency

TACAS 2018, https://arxiv.org/abs/1710.07859

https://arxiv.org/abs/1710.07859


Game-based search

• Goal is finding adv. example, reward inverse of distance

• Player 1 selects the feature that we will manipulate

• Each feature represents a possible move for player 1

• Player 2 then selects the pixels in the feature to manipulate

• Use Monte Carlo tree search to explore the game tree, while querying the 
network to align features

• Method black/grey box, can approximate the maximum safe radius for a given 
input



Guarantees for deep learning!

• Prove that no adversarial examples exist in a neighbourhood around an input

• Compute lower and upper bounds on maximal safety radius

A Game-Based Approximate Verification of Deep Neural Networks with Provable Guarantees. Wu et al, 
CoRR abs/1807.03571, 2018.



Evaluating safety-critical scenarios: Nexar

• Using our Game-based Monte 
Carlo Tree Search method we 
were able to reduce the 
accuracy of the network form 
95% to 0%

• On average, each input took 
less than a second to 
manipulate (.304 seconds)

• On average each image was 
vulnerable to 3 pixel changes



3D deep learning
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LiDAR and inherent error in point clouds

• Point ordering matters

• Partial occlusion of 
contiguous points

• Dark black could affect the 
reliability of sensor

• Misoriented sensors 

• Need sub-second decision 
making

58



Can also attack 3D deep learning (Lidar)

Classified as Car 

85% Confidence

Iterative Sample 

Occlusion only 

removes 56 

points

Random 

Occlusion 

removes 1385

Misclassified - 

Bathtub 28% 

Confidence

Misclassified - 

Airplane 12% 

Confidence

…reduce accuracy to 0% after occlusion of 6.5% of the occupied input space, 
targeting the critical set

Robustness of 3D Deep Learning in an Adversarial Setting. Wicker & K, In Proc. CVPR 2019.



Probabilistic guarantees

• Requiring that no adversarial examples exist too strict!

• Need to probabilistic guarantees: probability that local perturbations result in 
predictions that are close to original

• Taking account of the learning process

• Bayesian neural networks have prior on weights

− account for noise, uncertainty, etc

− return an uncertainty measure along with the output

• Need to compute posterior probability

− often intractable

− can we do better?



Statistical robustness guarantees

• Work with Bayesian neural networks

• Define safety with prob 1-𝜀

𝑃𝑟𝑜𝑏(∃y ∈ η s.t. f(x) ≠ f(y) | D) ≤ 𝜀

• i.e. conditioned on training data D

• Method: sample the weights, then employ statistical model checking (Massart
bounds, sequential test)

− compare robustness and accuracy trade offs for different inference methods

IJCAI 2019, https://arxiv.org/abs/1903.01980

x

y



Uncertainty quantification with guarantees

62ICRA 2020, https://arxiv.org/abs/1909.09884

• Safety verification for Bayesian neural network autonomous driving controllers



But more progress needed…
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Concluding remarks

• Much excitement about potential of the developments in AI

• and exciting opportunities!

• But deep learning should be more critically evaluated when put into practice in 
safety-critical situations

• We must have guarantees for safety, security, privacy, etc

− formal verification, safety assurance

• and need to know know the limits, also for deep learning

− rigorous foundations, methodology

• and social implications

− ethics, fairness and morality

• Many challenges remain 66
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