ERTS 2020, Toulouse 29t January, 2020

Safety verification for deep neural
networks with provable guarantees

0),430)28D,

Prof. Marta Kwiatkowska

Department of Computer Science
University of Oxford



The unstoppable rise of deep learning

- Neural networks timeline
1940s First proposed
1998 Convolutional nets
2006 Deep nets trained
2011 Rectifier units
2015 Vision breakthrough
2016 Win at Go
2019 Turing Award

- 3 A~ N — e —
}h \U WA Nt
¥l 1 J D' §
TS ) . o

) ey 4 » o e
w, Yoshua Bengio,

- Enabled by
— Big data
— Flexible, easy to build models
— Availability of GPUs
— Efficient inference




Deep learning with everything

DeepFace
Closing the Gap to Human-Level
Performance in Face Verification

Yaniv Taigman

Ming Yang
MarcAurelio Ranzato
Lior Wolf

-2014

97.35% accuracy

Trained on the largest facial
dataset - 4M facial images
belonging to more than 4,000
identities.

Google Translate—here shown on a mebile
phone—uwill use deep leaming o improve its
franslations between texts.

Build for voice with Alexa [Nismimsse

O arnazon alexa




Deep learning in healthcare

nature International weekly journal of science

Home | News | Research | Careers & Jobs | Current Issue | | Audio & Video | For Authors

Article metrics for:

Dermatologist-level classification of skin cancer with deep 1 LETTER

Andre Esteva, Brett Kuprel, Roberto A. Novoa, Justin Ko, Susan M. Swetter, Helen M. Blz https ://dol.org/10.1038/41586-019-

Nature 542, 115-118 (02 February 2017) | doi:10.1038/nature2 1056
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A clinically applicable approach to continuous
The Stanford University team said the findings were "incredibly exciting” and prediction Of future acute kid_ney injury

now be tested in clinics. _ o o o . v »
Nenad Tomasev'#, Xavier Glorot', Jack W. Rae"<, Michal Zielinski', Harry Askham’, Andre Saraiva’, Anne Mottram’,
Clemens Meyer', Suman Ravuri’, Ivan Protsyuk®, Alistair Connell’, Cian O. Hughes’, Alan Karthikesalingam’,

EventuaIIm they believe USiI"IQ Al could revolutionise healthcare by turning any Julien Cornebise'*?, Hugh Montgomery®, Geraint Rees*, Chris Laing®, Clifton R. Baker®, Kelly Peterson’*, Ruth Reeves’,
- Demis Hassabis', Dominic King', Mustafa Suleyman', Trevor Back'"*, Christopher Nielson'"""** Joseph R. Ledsam"*** &
smartphone into a cancer scanner. Shakir Mohamed 3
Cancer Research UK said it could become a useful tool for doctors. The early prediction of deterioration could have an important role Promising recent work on modelling adverse events from elec
in supporting healthcare professionals, as an estimated 11% of  health records’ " suggests that the incorporation of machine le:
The Al was repurposed from software developed by Google that had learned deaths in hospital follow a failure to promptly recognize and treat  may enable the early prediction of AKI. Existing examples of sequ

. . deteriorating patients'. To achieve this goal requires predictions  AKI risk models have either not demonstrated a clinically appl
spot the difference between images of cats and dogs. - S SRR - - i S A



Much excitement about self-driving

www.bsfilms.me - Black Sheep Films



http://www.bsfilms.me/

Self-driving in Oxford....




Would you trust a self-driving car?

We're looking to learn from people with diverse transportation needs. Here are

some of the first riders who are already using our self-driving cars every day.

Ted and Candace

A typical day in Ted and Candace’s household is full of busy
activities across both the parents and their four children: Abbi,
Brielle, Izzy and Trey. This lively family is now using our self-driving
cars to get to work, shuttle four kids to school and juggle
everything from the parents’ weekly date night to their children’s

soccer practice. They are excited about giving everyone in their

home a greater sense of freedom and independence.

Waymo early riders, Tesla, Uber, ...
In the UK FiveAl, Oxbotica, ...



Unwelcome news recently...

Self-Driving Uber Car Kills Pedestrian in Arizona, Where Robots Roam

Leer en espaiiol

i e e oo Tesla Says Crashed Vehicle Had Been on Autopilot Before Fatal Accident

By GREGORY SCHMIDT MARCH 31, 2018 o o

S s RELATED COVERAGE
w7 ok
-

Tesla Looked Like the Fu

3 e s . 5
Iy g 'w | ﬁ I Ask if It Has One. vARC

Fatal Tesla Crash Raises New Questions About Autopilot System
U.S. Safety Agency Criticizes Tesla Crash Data Release

How can this happen if we have 99.9% accuracy?



An Al safety problem...

- Complex scenarios
- goals
- perception
- autonomy

— sSituation awareness

— context (social, regulatory)
— Trust

- ethics

\

\

. Safety-critical, so
guarantees needed

¥
/f \
| v -

Crledit: Anita Dufala/Public source

- Should failure occur, accountability needs to be established



Modelling challenges

- Cyber-physical systems
— hybrid combination of continuous and discrete dynamics, with
— autonomous control

- Data rich, data-enabled models
— achieved through learning
— parameter estimation
— continuous adaptation

- Heterogeneous components, including learning based
— model-based design
— automated verification via model checking
— correct-by-construction model synthesis from specifications

stochasticity




Probabilistic verification and synthesis

Stochasticity ever present
— randomisation, uncertainty, risk

Need quantitative, probabilistic guarantees for:
— safety, security, reliability, performance, resource usage, trust, authentication, ...
Examples
— (reliability) “the probability of the car crashing in the next hour is less than 0.001”
— (energy) “energy usage is below 2000 mA per minute”

My focus is on automated, tool-supported methodologies
— probabilistic model checker PRISM, www.prismmodelchecker.org
— HVC 2016 Award (joint with Dave Parker and Gethin Norman)

- Applied to a wide range of systems...



http://www.prismmodelchecker.org/

OK, but what is probabilistic verification good for?

ALL RIGHT, BUT APART FROM

THE SANITATION,
‘ THE MEDICINE,
EDUCATION, WINE,
PUBLIC ORDER,
IRRIGATION, ROADS,

3 THE FRESH-WATER SYSTEM,
’ 5 AND PUBLIC HEALTH,

WHAT HAVE THE ROMANS EVER DONE FOR US?

16



Case study: Cardiac pacemaker

How it works
— reads electrical signals through sensors in the right atrium and right ventricle

— monitors the timing of heart
beats and local electrical activity

Pacemaker
pulse generator

— generates artificial pacing i
signal as necessary

Lead in
right atrium

Safety-critical real-time system!
- The guarantee

- (basic safety) maintain )\ -
60-100 beats per minute Lead in

right ventricle

— Killed by code: FDA recalls 23 defective pacemaker devices because of adverse
health consequences or death, six likely caused by software defects (2010)

17



Modelling framework

Model the pacemaker and the heart, compose and verify

aorta
{to body) atrioventricular
bundle of His
pulmanary
artery
to lungs) Ieft
atrium
sinoatrial
SA) node
left bundla
branch

atrioventricular —ESy
{AV) node /

right atrium

right bundle \ N y left

right ventricle

Quantitative verification of implantable cardiac pacemakers over hybrid heart models. Chen et a/,
Information and Computation 2014




Modelling framework

inter VS|

t=0

VP?
t=0

VRP
t<=TVRP

Vget?

Idle

aorta

{to body) atrioventricular
bundle of His
pulmanary
artery
to lungs) Ieft
atrium
sinoatrial
SA) node
left bundle
atrioventricular branch
(AV) nade
right atrium
right bundle left
branch - ventricle Copyright ©2008 Bosto fific Corporation Al rights reserved.

right ventricle

module “FF

s_wrps[0..2] imit O
tT_vrp : clock;

A Invariants Tor clock t_wvrp

invariant
(s_wrp = 2 == (t_vrp <= TWVEF)) &
(s_wrp=1=+ (t_wvrp <= 0 1)
endinvariant

[Vget] (s_wrp =03 -» (s_vrp' = 17 & (t_vrp'=07;
VP (s_wrp = Q) == (s_wrp' = 20 & (t_vrp' = 07);



Modelling framework

inter VS|

VRP
t<=TVRP

t=0

VP?
t=0

Vget?

t>=TVRP

|-| Aget

i Corporation Al rights reserved.

/\ Copyright ©2008 Boston Selents

= module “FF

)

“ Vget Idle
\

200ms

e s_wrps[0..2] imit O
tT_vrp : clock;

A Invariants Tor clock t_wvrp

invariant
(s_wrp = 2 == (t_vrp <= TWVEF)) &
(s_wrp=1=+ (t_wvrp <= 0 1)
endinvariant

[Vget] (s_wrp =03 -» (s_vrp' = 17 & (t_vrp'=07;
VP (s_wrp = Q) == (s_wrp' = 20 & (t_vrp' = 07);



Pacemaker verification

- Basic guarantees

— (basic safety) maintain

60-100 beats per minute

— (energy usage) detailed analysis,
plotted against timing parameters

of the pacemaker

- Advanced guarantees

— rate-adaptive pacemaker, for patients with 2200
chronotropic deficiency

— (advanced safety) adapt the rate to exercise e

and stress levels
— in silico testing

ol '
"l,"’""l"!%';l_,"

N W
\\\\\ N

4
NS
i /

3000-

2800-

2600-
2400~

Energy

2000 -

80

7100  TAVI [msec]

TURI [msec] 20

Closed-Loop Quantitative Verification of Rate-Adaptive Pacemakers. Paoletti et a/, ACM Transactions on

Cyber-Physical Systems 2018



Synthetic ECG: healthy heart
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Bradycardia (slow heart rate)
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Bradycardia heart, paced
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Parameter synthesis for pacemakers

- Can we adapt the pacing rate to patient’s ECG to

— minimise energy usage?
— maximise cardiac output?
— explore trade offs?

- The guarantee

— (optimal timing delay synthesis):
find values for timing delays that
optimise a given objective,
adapted to patient’s ECG

- Significant improvement over default
values

TLRI(ms)

a) Bradycardia: slow heart rate
2o _Default

1800
1600
1400
1200
1000
800
600
400

200

200 400 600 800 1000 1200 1400 1600 1800 2000
TURI (ms)

Svynthesising robust and optimal parameters for cardiac pacemakers using symbolic and evolutionary

computation technigues. Kwiatkowska et a/, HSB’16




Trade offs in optimal delay synthesis
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Case study: ECG biometrics

Biometrics increasing in popularity
— are they secure?

Nymi band
— ECG used as a biometric identifier
— biometric template created first
— compared with real ECG signal

Proposed uses

— for access into buildings and
restricted spaces

— for payment
— etc

Broken Hearted: How to Attack ECG Biometrics, Ebertz et al., In Proc NDSS 2017




Attack on ECG biometrics

- We use synthetic ECGs to
Impersonate a user

Reference signal Hardware waveform generator

— build model from data, 75-
_MSE: 0.015
41 volunteers 50 -
— inject synthetic signals to . 357
. ; >
break authentication = 0-
— 80% success rate 2 72
6 Software waveform generator Audio playback
9 75- I
- Results 8 (MSE = 0.035 (MSE = 0.017]
_ 9 50-
— serious weakness o5 -
— countermeasures needed 0-
-25 - T T T T T T T T
0 1 2 3 0 1 2 3
Time [s]

- Modelling essential, good for attacks...



Case study: Transferability of attack

- Beware your fitness tracker!

- How easy it is to predict attacks
when collecting data
from different sources
— ECG

— eye movements

— mouse movements

— touchscreen dynamics target target
; s /))’o D .
B galt ..°°.. .. @\S\OOG( 00& Ce ..°°... LEGEND
. ;
— etc 5

8 rﬁ :smartphone
victim SAadversary Re W security
- Human study o,

% pop.g.lation
<
— easy for eye movements o
— ECG more chaotic

')
“’ measure

source source

When your fithess tracker betrays you, Ebertz et al., In Proc S&P 2018




Back to the challenge of autonomous driving...

- Things that can go wrong in perception software
- sensor failure
- object detection failure

Machine learning
software

— not clear how it
works

- does not offer
guarantees

- Yet safety-critical
applications

Lidar image, Credit: Oxford Robotics Institute



Deep neural networks can be fooled!

- They are unstable wrt adversarial perturbations
— often imperceptible changes to the image [Szegedy et al 2014, Biggio et al 2013 ...]
— sometimes artificial white noise
— practical attacks, potential security risk
— transferable between different architectures

— not just image classification: also images segmentation, pose recognition, sentiment
analysis...



Training vs testing

Model training Model testing

————— Task decision boundary % Training points for class 1 = = = = Task decision boundary ?3 Training points for class 1
Model decision boundary @ Training points for class 2 — Model decision boundary @ Training points for class 2

x Testing points for class 1 “ Adversarial examples for class 1



Should we worry about safety of self-driving?

(a) (b)

Deep neural networks are unstable wrt adversarial perturbations

— Nexar Traffic Light Challenge: red light classified as green with 68%/95%/78%
confidence after one pixel change

Feature-Guided Black-Box Safety Testing of Deep Neural Networks. Wicker et a/, In Proc. TACAS, 2018. 39




German traffic sign benchmark...

stop 30m 80m 30m go go
speed speed speed right straight
limit limit limit
Confidence 0.999964 0.99

Safety Verification of Deep Neural Networks. Huang et a/, In Proc. CAV, 2017.




Aren’t these artificial?

Real traffic signs in Alaska!

Need to consider physical attacks, not only digital...



Safety of classification decisions

- Assume given 0

- Safety assurance process is complex
Here focus on safety at a point as part of such a process
— same as pointwise robustness... N

— trained network f : D — {c,,...¢;}
— diameter for support region n
— norm, e.g. L2, L®

Define safety as invariance of classification decision over n
— i.e. Ay € n such that f(x) = f(y)

. Also wrt family of safe manipulations

— e.g. scratches, weather conditions, camera angle, etc

V.



Training vs testing vs verification

Model verification

_____ Task decision boundary $2 Training paints for class 1

Model decision boundary (© Training points for class 2

x Testing points for class 1 O Correct / wrong classification



Searching for adversarial examples...

Input space for most neural networks is high dimensional and non-linear

- Where do we start?

How can we apply structure to the problem?

Image of a tree has
4,000 x 2,000 x 3
dimensions =
24,000,000
dimensions

We would like to find a
very ‘small’ change to
these dimensions




Feature-based representation

- Employ the SIFT algorithm to extract features

- Reduce dimensionality by focusing on salient features

- Use a Gaussian mixture model in order to assign each pixel a probability based
on its perceived saliency

1

Giw = ———=cxp(

. IZ:TA;{H

(pm:' - 4}'LI :::)2 - 1 _[:py . }‘i_y)z
G : g f— 1 )
oz ) G

- _exp :
2mA2 : ( 2X
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0.6
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0.0
0 50 100 150 200

TACAS 2018, https://arxiv.org/abs/1710.07859



https://arxiv.org/abs/1710.07859

Game-based search

- Goal is finding adv. example, reward inverse of distance
- Player 1 selects the feature that we will manipulate

100
125 1
150 1
175 1
200 A

- Each feature represents a possible move for player 1
- Player 2 then selects the pixels in the feature to manipulate

- Use Monte Carlo tree search to explore the game tree, while querying the
network to align features

- Method black/grey box, can approximate the maximum safe radius for a given
iInput



Guarantees for deep learning!

- Prove that no adversarial examples exist in a neighbourhood around an input
- Compute lower and upper bounds on maximal safety radius

lterations of MCTS
4 5 6 7

1 2 9 10

J 18

0.025F 17
. 16
3 Convergence Trend of S
S 0.02r 15 5
% Upper Bound g
T ©
o “14 o~
= =

L) 0.015 B

= f 1 C
3 | 1, 3
@ 2 m
$ 001} |, 8

Convergence Trend of 0

Lower Bound W
0.005/ 41
: -2
10° 10' 102 10° 10*

Iterations of Admissible A*

A Game-Based Approximate Verification of Deep Neural Networks with Provable Guarantees. Wu et a/,
CoRR abs/1807.03571, 2018.




Evaluating safety-critical scenarios: Nexar

Using our Game-based Monte
Carlo Tree Search method we
were able to reduce the
accuracy of the network form
95% to 0%

On average, each input took
less than a second to
manipulate (.304 seconds)

On average each image was
vulnerable to 3 pixel changes




eep learning

~

00e ol

2D region (from CNN) to 3D frustum
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LiDAR and inherent error in point clouds

Point ordering matters

Partial occlusion of |
contiguous points e
S,
Dark black could affect the - is FEBE
reliability of sensor e
L R—
Misoriented sensors e

making

Need sub-second decision .. %/[



Can also attack 3D deep learning (Lidar)

ar b y ¥ . -

i iz VoxNet: Robustness: ISO vs. Random (MN4(
%[ DEEI ﬂ - —— Rardom Oockusion

: 2 |50 Dcchasion

® Repot from Qi et al X017
N R R D — T "
Iterative Sample Misclassified -
Occlusion only Bathtub 28% 0
removes 56 Confidence E'
points E
D 0
[ %]
o
i' o--, o - 0z
Classified as Car
85% Confidence —— )|
0o
ganldom %is?lassi;igg - 3 - P & - e
cclusion irplane ()
removes 1385 Confidence PBI’CEI’“. ﬂCClUdBd

...reduce accuracy to 0% after occlusion of 6.5% of the occupied input space,
targeting the critical set

Robustness of 3D Deep Learning in an Adversarial Setting. Wicker & K, In Proc. CVPR 2019.



Probabilistic guarantees

Requiring that no adversarial examples exist too strict!

Need to probabilistic guarantees: probability that local perturbations result in
predictions that are close to original

- Taking account of the learning process

Bayesian neural networks have prior on weights
— account for noise, uncertainty, etc
— return an uncertainty measure along with the output

Need to compute posterior probability
— often intractable
— can we do better?



Statistical robustness guarantees

- Work with Bayesian neural networks

- Define safety with prob 1-¢

Prob(3y e ns.t. f(x) # f(y) | D) < ¢
- i.e. conditioned on training data D

- Method: sample the weights, then employ statistical model checking (Massart
bounds, sequential test)

— compare robustness and accuracy trade offs for different inference methods

|JCAI 2019, https://arxiv.org/abs/1903.01980




Uncertainty quantification with guarantees

. Safety verification for Bayesian neural network autonomous driving controllers

roaching Obstacle (MC Dropou
P(Safe):
(@) 0.63
(b)
P(Safe):
0.56
(c)
P(Safe):
0.71

ICRA 2020, https://arxiv.org/abs/1909.09884

Probability mass around mode

Uncertainty on Approach (MC Dropout)

i to collision

Uncertainty on Approach (Mean Field V1)

to collision

Uncertainty on Approach (HMC)
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But more progress needed...

'l hate them': Locals reportedly
are frustrated with Alphabet's
self-driving cars

* Alphabet's self-driving cars are said to be annoying their neighbors in Arizona,
where Waymo has been testing its vehicles for the last year.

* More than a dozen locals told The Information they they hated the cars, which
often struggle to cross a T-intersection near the company’s office.

* The anecdotes highlight how challenging it is for self-driving cars, which are
programmed to drive conservatively. to handle certain situations.

Published 32:04 PM ET Tue, 28 Aug 2018 | Updated 12:52 PM ET Wed, 29 Aug 2018

JecnBC

Source: Waymo

Self-driving cars should be allowed to
mount pavements and break speed limit
in emergencies

f share ! »;jl l@ »

A Tesla Model S
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Concluding remarks

Much excitement about potential of the developments in Al
and exciting opportunities!

But deep learning should be more critically evaluated when put into practice in
safety—critical situations

- We must have guarantees for safety, security, privacy, etc
— formal verification, safety assurance

and need to know know the limits, also for deep learning
— rigorous foundations, methodology

and social implications
— ethics, fairness and morality

Many challenges remain
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